您现在的位置:中考南京站 > 中考备考 > 中考一模 > 2012年数学一模 > 正文
来源:http://nj.zhongkao.com/e/20120517/4fb49a35421c0.shtml 作者:http://files.eduuu.com/ohr/2012/05/17/141935_4fb4987774ad7.zip 2013-08-13 13:44:15
建邺区2012年九年级学情分析卷
数学参考答案及评分标准
说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分.
一、选择题(每小题2分,共计12分)
题号 |
1 |
2 |
3 |
4 |
5 |
6 |
答案 |
A |
B |
D |
C |
C |
A |
二、填空题(每小题2分,共计20分)
7. 8. 9. 10. 11.3
12.1 13.145° 14.(-4,3) 15.21° 16.
三、解答题(本大题共10小题,共计84分)
17.(本题6分)
解:原式=······················· 3分
································· 6分
18.(本题6分)
解:解不等式①,得x≥-2.························ 2分
解不等式②,得x<13.··························· 4分
所以,不等式组的解集是-2≤x<1.···················· 5分
画图正确(略).······························ 6分
19.(本题6分)
(1)列表或树状图表示正确;························ 3分
(2)A型号电脑被选中的概率P=······················ 6分
20.解:依题意得,∠ACD=45°, ∠ABD=60°
Rt△ADC中,,························· 1分
∴(千米).···················· 3分
Rt△ADB中,,
∴(千米).····················· 5分
∴BC=(千米).······················ 6分
答:.汽车C与汽车B之间的距离.约为12.7千米.
21.(本小题满分6分)
解:设金色纸边的宽为x分米,根据题意,得·················· 1分
2x+6)(2x+8)=80.···························· 4分
解得:x1=1,x2=-8(不合题意,舍去).·················· 6分
答:金色纸边的宽为1分米.························· 7分
22.(1)400;······························· 2分
图略:·································· 4分
(2)8··································· 6分
23.(本小题满分7分)
证明:(1)∵AD∥BC,∴∠DBC=∠ADB.
又∵BC=CD,∴∠DBC=∠BDC.
∴∠ADB=∠BDC.······························ 1分
又∵∠ADB=∠BDC,BA⊥AD,BE⊥CD,∴BA=BE.
在RT△ABD和RT△EB中, BD=BD, AB=BE.
∴△ABD≌△EBD. ···························· 2分
∴AD=ED.································· 3分
(2) ∵AF∥CD,∴∠BDC=∠AFD.
又∵∠ADB=∠BDC,∴∠AFD=∠ADB. ∴AD=AF.
又∵AD=DE,∴AF= DE且AF∥CD.∴四边形ADEF为平行四边形.········· 6分
∵AD=DE ,∴四边形ADEF为菱形. ······················ 7分
24. (本小题满分7分)
解
25.(本题8分)
解:(1)7:00~7:30加气站的储气量y(立方米)与时间x(小时)的函数关系式为:
y=10000-600x;······························ 2分
8:00之后加气站的储气量y(立方米)与时间x(小时)的函数关系式为:
y=-1200x+10400. ····························· 5分
(2)不能·································· 6分
因为(3××200+5××200)÷20=40<50, 所以50辆车不能在8:00之前加完气.8分26.(本题8分)
解:.(1)连接BC,BE ···························· 1分
由△ABD△CBE,可证得CE=AD························ 3分
(2)CE=AD ······························ 4分
连接BC、BE,过点A作AF⊥BC,垂足为点F
可证△ABD~△CBE
∴.
在RT△ABF中,∠ABC=60°
∴.
∴.······························· 6分
(3)CE=2sinAD····························· 8分
27.(本题10分)
解:(1)在中,∵AB=AC , M为BC中点
∴AM⊥BC
在Rt⊿ABM中,AB=10,BM=8 ∴AM=6.····················· 1分
当⊙O与⊙A相外切
可得 解得·················· 3分
当⊙O与⊙A相内切
可得 解得·················· 5分
∴当或时,⊙O与⊙A相切.
(2) 存在
当点O在BM上运动时()
可得 解得················· 8分
此时半径当点O在MC上运动时可得 解得················· 10分
此时半径
当或时,,⊙O与直线AM相切并且与⊙A相外切.
28.(本题10分)
解:(1) ······························· 1分
(2)①∵二次函数经过点(1,2)和(-1,0)
可得 解得
即····························· 2分
顶点坐标为(,)···························· 3分
② 该函数图像上等距点的坐标即为此函数与函数和函数的交点坐标
解得P1() P2()
P3() P4()················· 7分
(3) ∵二次函数与x轴正半轴交与点(m,0)且
∴ 即
同理
故
∵ 故
∴································· 10分
2023中考一路陪伴同行,百万名校真题直接下载!>>点击查看